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Abstract  

In this paper we present the results of an investigation of the finite self-consistent field 
theory of electrodynamics applied earlier to the calculation of the Lamb shift in hydrogen 
(Sachs & Schwebel, 1961; Sachs, 1972), now applied to the problem of the Lamb shift in 
the low-lying states of Helium. We construct the covariant nonlinear field equations of this 
theory for Helium, from the Lagrangian formalism. In the linear approximation, the 
Hamiltonian associated with this field theory for the two-electron atom is set up. It is 
equivalent to the Breit Hamiltonian plus two extra terms. This generahzation is a direct 
consequence of the two-component spinor formalism of the factorization of the Maxwell 
theory of electromagnetism that is contained in this theory, of electrodynamics (Sachs, 
1971). Thus, the energy spectrum predicted for the Helium atom is the spectrum predicted 
by the Breit Hamiltonian, shifted by amounts in the different energy states according to 
the effects of the extra terms in the Hamiltonian. The latter can be associated with the 
corrections to the Helium spectrum that  are conventionally attributed to the Lamb shift. 
The level shifts for the 11S and 23S states are calculated using the Foldy-Wouthuysen trans- 
formation, with the generalization of Charptvy for the two-electron atom. The results are 
found to be in close agreement with the experimental values for the energy shifts not  pre- 
dicted by the Dirac theory, and with the theoretical values predicted by quantum electro- 
dynamics. 

1. Introduction 

In o rde r  to  display the  success o f  the  p re sen t -day  t h e o r y  o f  q u a n t u m  elect ro-  
d y n a m i c s ,  one  n e e d  b u t  m e n t i o n  the  ca lcu la t ions  o f  the  L a m b  sh i f t  and  the  
a n o m a l o u s  magne t i c  m o m e n t  o f  the  e lec t ron .  However ,  the  t h e o r y  does  suffer  
f r o m  some  undes i rab le  fea tures .  F i rs t ,  d ivergences  appear  w h i c h  m u s t  be  r emoved  
b y  the  r e n o r m a l i z a t i o n  m e t h o d - a  scheme  o f  ca lcu la t ion  t ha t  is n o t  d e m o n s t r a b l y  
m a t h e m a t i c a l l y  cons i s t en t .  Second ,  the  fo rma l i sm o f  q u a n t u m  e l e c t r o d y n a m i c s  

does  n o t  give resul ts  in  c losed  form.  

$ The contribution from H. Yu taken from a thesis submitted in partial fulfillment for 
the Ph.D degree at State University of New York at Buffalo. Dr. Yu's present address is 
Roswell Park Memorial Institute, Buffalo, N.Y. 
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The self-consistent field theory of electrodynamics developed by Sachs (1972) 
and Sachs & Schwebel (1961) has been applied to the hydrogen atom and shows 
that the extra energy levels associated with the Lamb splitting are naturally 
predicted by the theory. This is due to extra terms that appear in the field 
equations. The existence of these terms is a consequence of the factorization 
of Maxwell's equations into a pair of uncoupled two-component spinor equations. 
(Sachs, 1971). In the linear approximation for the matter field equations, the 
extra terms lead to an extra contribution to the Dirac Hamiltonian for hydrogen. 
The prediction of the Lamb splittings (3Sin - 3P1/2) and (2Sln - 2/°1/2) by 
these terms was found to be within 1.0% of the experimental values, and as 
accurate as the values predicted by quantum electrodynamics. 

Continuing this line of study, we investigate this theory's prediction in regard 
to the helium spectrum. The method of calculation applied uses the Foldy- 
Wouthuysen type of transformation for the Dirac equation, for the two-electron 
atom, including the extra terms predicted by this theory (Charptvy, 1953). The 
extra terms appear here as an addition to the Breit Hamiltonian for Helium 
(Breit, 1929). 

The results of the perturbation calculations for the energy shift of the 
ionization energy of Helium, for the lowest state of parahelium and ortho- 
helium, due to these extra terms, are then compared with the experimental 
values of the Lamb shift of Helium, and with the theoretical values determined 
from quantum electrodynamics. 

2. The Field Equations for the Helium Atom 

2.1. The Construction of Field Equations 
In this section, we construct a Lagrangian density function for the Helium 

atom, from which the retativistically covariant field equations can be derived, in 
accordance with the principle of least action. 

The Lagrangian density depends explicitly on the Maxwell field spinors ¢~1), 
¢~1)'~, q~2), (~2)'~, for the electromagnetic field intensities of the two electrons, 
q~(n), $(an)t for those of the Helium nucleus, the Dirac field bispinors ~(1), ~(1), 
t)(2), ~-(2), for the dynamical field variables of the two electrons, f(n), $(n) for 
the dynamical variables of Helium nucleus, and on their respective first 
derivatives. 

These Maxwell field spinors satisfy the factorized electromagnetic field 
equations for this system as follows: :~ 

eubu¢~) = e(P)~-(P)pa~ (p) (2.1.1) 

:~ The notations used are: 

a . (=~x)={~o=- ia t ;~k}  x={xo=it ;xk} ,  cx=i'YoY 

70 ~k - i 0 

~-~ ~ f 7 o  and a k are Pauli matrices, h = c = 1. 
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where p = 1,2, n, a = 1,2, and 

(~-(P)(--70 + i73)~(P) t 
e(P) ff(P)p 1 qjC.) 47tie(P)\ ~(P)(i3'1 - 7:)ff (p) ] 

e(p)~(p)p2 ~(p) = 41riee ) (~(P)(-iT , - 72) ¢(P)t 
\ ~(P)(7o + i"/3)tk (p) ] 

The Lagrangian density can be constructed from three parts: L = L D + L M +L I. 
The first part is the usual 'free field' Dirac Lagrangian density, 

n 

LD = Z 
p = l  

[~-(P)(Tu8 u + rn(P)) ~k(p) + ( -  au~(P)Tu + m(P)~(P)) tp (p)] 

(2.1.2) 

The second part contains an interaction term which couples the Maxwell 
field variables to the Dirac field variables through the source term ~'(P)Faff (p). 
This is the part that gives rise to the Maxwell field equations (2.1.1), when 
variation is carried out with respect to the Maxwell (spinor) field variables. 
The form of this part of Lagrangian is as follows: 

n 

LM = igm E E 
p@-q=l a=l,2 

(-1)a~)t(ou0uq~ (q) - 2e(q)~(q)ro~ (q)) + h.c. 
(2.1.3) 

where gm is the extra fundamental constant in this theory, previously deter- 
mined (Sachs, 1972). The value isgm = (2-087 -+ 0.001). 10 -14 cm. 

The third part contains the conventional interactions which couple the 
velocity fields of the particles, except for the omission (by this theory) of 
self-interactions (p = q), 

n 

p~q=l 
eq')e(q)~(P)%~ (p) f ~(q)Tu~(q)G(x - x') d4x 

(2.1.4) 

where the Green's function G(x - x') satisfies D'Alembert's equation 

EJG(x - x ' )  = -47r3(x - x ' )  

The total action function whose vanishing variation gives the behavior of the 
Helium system is 

A = f f  L d 3 x d t  (2.1.5) 
t '  
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The field equations for Helium are now derived from the above action in 
accordance with the principle of least action, giving the following equations 
in 4: 

[9'/sO u + 111 + 112 + I21 + I22 + me] 4 (1) = 0 (2,1.6) 
t t t 

[7u3u +I l t  +t12 +I21 +I :2  + rne]ff (2) = 0 (2.1.7) 

[Tu3u +In +Mn] ~(n) = 0 (2.1.8) 

where m e , M  n are the electron and Helium nuclear mass respectively ?, and 

[ 1 l (x)= --(e2)T/~ f ~-(2)Tv.~(2)G(x -- x ' )  d4x ' = iTtze f J(2)(x ' )G(x  - x ' )  d4x ' 

I12(x) = 2e2T,, f ~(n)%zt~(n)G(x x ')  d4x ' = 2i7,,e f J(n)(x ' )G(x - x ')  d4x ' 

2 

I21(x) = igm.(--e)  
a = l  

( -  1) a [qS(~2)t(x). lP~ - (ToPa'~To). ~b(2)(x)] 

2 

/22(X)  = i g  m . ( - - e )  E 
~=1 

( -  1) ~ [q~(n)t(x). r a  - (~,oP~t-y0). ~(n)(x)] 

t ! t 

I l i , [ 1 2 , I 2 t , I ; 2  are obtained by interchanging 1 and 2. 

In(x)  = - 7 u ( 2 e )  f ( - e )  ~-(')Tu 4 (')G (x - x ')  d4x ' - 7u(2e) f  

x ( -  e) ~-(2)% 4 (2)G (x - x ' )  d4x ' 

2 

+ ig  m (2e )  ~, (_  1)a [~(1)?. Us _ (70 P~?70). $O)] 
a = l  

2.2. The Partial Linearization o f  FieM Equations 

We now show that the solution of (2.1.8) can be approximated by the 
following stationary form 4 (n) = e-iMntf(r)s, where s is the constant four- 
component spinor such that sts = 1. Dividing (2.1.8) by Mn we have 

--~nnTk k +1 4 (n )=0  (2.2.1) 

For the purpose at hand, we write the (spinor) equation for the He 3 nucleus. This 
makes no difference in the calculation that follows for the atomic spectrum of He, as the 
approximation will be used that is equivalent to infinite nuclear mass. 
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The operator 7kOk/Mn corresponds to the ratio of kinetic energy of He 
nucleus to its rest energy. Since the recoil energy of He nucleus is negligible 
compared to its rest energy, we can neglect this term. The operator ln/Mn 
corresponds to the ratio of Helium binding energy to the Helium nuclear rest 
energy. This also can be assumed small enough to be neglected. Therefore 
equation (2.2.1) takes the form (in the rest frame of the He nucleus): 

(l-~n ~/o o + 1)e-iMntf(r)=O (2.2.2) 

f(r) can be chosen arbitrarily without altering the validity of equation (2.2.2). 
Appealing to the physical argument that leads to the assumption of stationary 
point Helium nucleus, we take 

If(r) 12 = 8(r) (2.2.3) 

8(r) is the three-dimensional delta function. This leads to: 

~-~"~Vk¢ "~ = O, ~"~Vo¢ "~ = 6(~)  

In the limit of stationary Helium nucleus and sufficiently small momentum 
transfer between the interacting electrons, compared with mc, the specifica- 
tion of each electron of the He atom can be made with respect to their own 
private space-time coordinate frames. This is because in a first approximation, 
the equations for the two electron waves may be considered separately. Thus 

• t ! ! t 

x goes to x 1 in Ii1,I12,I21, I22 and x goes to x 2 mll1,I12,I21,I22.  Inserting 
(2.2.3) into I12 we have 

2e27o , 2e2')'o 
I12 = ~ ,  Similarly I12 = (2.2.4) 

r 1 r2 

These are just the Coulomb potential. 
Before/22 can be determined explicitly, we must know the form of the 

spinor solution O(n) of the Maxwell's field equations for the nucleus. Putting 
(2.2.3) into (2.1.1), we have: 

, 3 ~ n )  =-4zri  .(2e) 6 ( r } ; )  (2.2.5a) 

(2.2.5b) 

The solutions are (Sachs, 1971) 

 V(x) = -  2ie ( z ] 
r 3 \ x + i y / '  

(2.2.6) 
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Finally, substituting these solutions into 122, we obtain: 

122 = 16rrigm2e2 (r 1 xy)~  (2.2.7) 
r 3 

We now proceed to solve the spinor Maxwelt's equations for the two 
electrons. The Green's function for the two-component spinor equations is 
(Sachs, 1971) 

S(x-- x')=(@~)4 f ~e'ku(~u-Xh) d4k, 
ku 

Thus, 

Because 

G = ( % ;  - =) 
(2.2.8) 

, 1 a f eik.(xu-~; ) 

1 y eiku(xu- x~ d4k 1 
4zr3 ku z = ~  8(t '  + R  - t) 

S(x - x ' )  can be written explicitly as 

s(~-x')=(-~) Oo~8(t +R- t ) -  , , .rj - ~ 8 ( t  +R-t) 

where (2.2.9) 
A - -  r x x '  

R - t rxx, I - I r - r ' ( t ' )  1, rxx' = 
R 

and 
d 

8 '(t' + R(t') - t) =- ~ - / 5 ( f -  t) 

The solutions are as follows: 

where 

= p ) t ~)~)(x) f S(x - x ) T ~  (x)  d4x ' p = 1,2 

~l,~p)(x,) = - . . [P+]3 '  ( ] ; - i ]2]  ~m~], + ij2]' T~) (x ' )  = -4 r r i  ]3] 

p(r ' ,  t ' )  = - e S ( r  - r ' ( t ' ) )  

":r' t" Jt  , ) = - e V S ( r -  r ' ( t ' ))  

(2.2.10) 

and where r ' ( t ' )  is the position of the electron at the retarded time. Thus, with 
these source terms we obtain 

~?)(~)---~'e % ~d7 [\V,x- v, d 



where 

/(=at=l+__ 
- dr' 

(If  now we put c into the equations.) 
We have 

O~2)(x)=ie[w.Fxx'( lo)K@]+OQV)+O(~2) 

~-- - KR 3 (x - x') +i(y - y ' )  

Similarly, 
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a f  1 1 

\V lx  - iVly] K dr' \Vlx + Viy/]Jj 

(2.2.1!) 

~x~,.V 
c 

(2.2.12) 

O(Z)(x),,~_ ~ie ((x - x ' ) -  i(y - (z - z') 

The substitution of (2.2.12) and (2.2.13) into I21 leads to 

(r12xY)3 
121• --il6rrgm e2 Kr32 { 

The velocity of the two electrons in He atom is the order of ca, c~ ~ e2/hc so 
K ~  1 inI21. 

(2.2.13) 

(2.2.14) 

3. The Hamiltonian for Helium 

It is the main purpose of this paper to investigate the contribution to the 
Helium spectrum due to these extra electromagnetic interactions involving 
gin. Thus, it is not necessary here really to solve exactly the two non-linear 
coupled field equations for the two electrons. From the physical point of 
view, we can construct a total Hamiltonian for He from terms in these two 
field equations, such that 

H'IJ = - E ~  (3.1) 

where 

H = H o  +Hla +H12 +H21 +H22 

a 

E = ~1 axlo + ~2 ax2o 
Ho = (°t l .  Pl +=2-P2)  c + (~1 +/32) mc2 

$ Because rxx' goes to r12 in 121. 
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Hi1 = ½(31111 + ~2I'11) 

H12 = 31112 + 32 I'12 

H2~ = ½(~1121 + 32121) 

/-/22 = ~1122 + ~2122 

~I' is now the He wave function that has 16 components. 
The physical meaning of the various terms in the Hamiltonian is as follows: 

Ho is the free particle Dirac Hamiltonian. 
H11 is the sum of the Coulomb interaction between the two electrons and 

the Breit interaction term (Breit, 1929) which is, up to the order of 
(V2/c2), 

e 2 e 2 [ ] 
H l a _ ~  _ _ _  + _  Qtl "=2 + (IXl . r12) (~1  .r~z)  ( 3 . 2 )  

r12 2 k r12 r32 

H12 is the Coulomb potential of the two electrons due to the Helium 
nucleus. 

//21 is the extra electromagnetic coupling term between the two electrons. 
Hzz is the extra electromagnetic coupling term of the two electrons due to 

the nucleus. 

These two terms do not have any counterpart in the standard vector-tensor 
representation of the Maxwelt's formalism. 

We see that, without the terms H21 and H22, this wave equation is just the 
Breit equation for He. Therefore the energy spectrum, without considering 
the contribution of these two terms, will be the same as that from the conven- 
tional Dirac theory. We now investigate whether these two extra terms will 
give the correct shift to the energy levels of He, replacing the usual quantum 
electrodynamical contributions associated with the Lamb shift. 

Since these two terms are much smaller than the total energy of He atom,$ 
first-order perturbation theory will be sufficient for calculating the energy 
shift. 

4. Energy Shift of He Due to H=2 

This two-particle Hamiltonian in the above section can be reduced to the 
non-relativistic limit by the Foldy-Wouthusen type of transformation. The 
variational wave function will be used for the perturbation calculations. The 
reduced Hamiltonian, up to the order ofo~ 2, given by Chaplevy (1953) is as 
follows (in atomic units): 

e¢ 2 
g R = - ; + (ee) - T [(°e)2 + (~°)2] 

~: Because the order ofg m is only ~ 10 -14 cm. 
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C~ 4 ~4 
T [Roe), (ee)], (oe)] + E [[(eo), (e~)], (eo)l 

&6 
+ -~ [(oe) 4 + (eo)4l + ~-~ (00) 2 

C~ 4 (X 4 

~- [[(oc), (oo)]+, (co)] + + ~ [[(eo), (oo)]+, (oe)]+ 

C~ 6 
-- 76  [(o~), (~o)] 2 

C~ 6 O~ 6 
-- -8- [(Oe) 2, (CO)2]+ -- ~ -  [(~O)(OC)2(ffO) + (oe)(eo)2(oe)] 

81 

(4.1) 

where (oe) is the operator in the Hamiltonian odd with respect to the first 
electron and even with respect to the second, in the Dirac matrix =, and 

(eo)-(even, odd) 

(ee)-(even, even) 

(oo)-(odd, odd) 

[a, b] and [a, b]+ are the commutator and the anticommutator respectively. 
For our case, 

2 2 1 
(ee) = -- + -- - - -  (4.2a) 

r 1 r2 r12 

where 

1 (=1 .=2 )  1 i 
(oo) 2 r12 + -2 r~--7 (% " r12)(% "h2) (4.2b) 

1 + K (r 2 x =2)a (eO) = g (=2"P2) r2 

(0e) = %0~ (=1" Pl)  .4- r ~  ( r l  X =1)3 

(4.2c) 

(4.2d) 

K =-- 16rr(gm/3,e)(2a) 2, Xe =- 
me 

The reduced Hamiltonian, HR,  up to the order of a 2, is just equal to the 
conventional Breit Hamiltonian in approximate reduced form, plus the 
additional term Q: Thus, 

HR = HRo + HB + Q (4.3) 
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HRO = V , 2 +  V,2+ 2 + 2 1 

2 2 rl r2 r12 

HB =HB(1) +HB(2) 

Q = Q(1) + Q(2) 

where H s is the conventional Breit Hamiltonian in approximate reduced form 
(Charplvy, 1954) 

1 a 2 012[pl.P2 (r12.Pl)(r12.P2)] H~(1)=- ~+~-p ,4  +~ - + 
L r12 r~2 

012 ( +r12~ 012 
+--egl"4 E1 r~2] xp l  + 8  -'4rr~(rx2) 

012 [ i ( r ~ . p l )  26 2.(r12 x p l )  ] 
4 [ r~2 r312 - 4ni8 (r12)(r12 x Pt) 

012 [al .a2 -- 3(al-r12)(a2-r12) 87r ] 

A 

~ [ 3  2 o ~ 2  (~1.ri2)(o2.ri2)] 
- a L~2- r~l--; - +  ~ 

HB(2) = HB(1)(rl -~ r2, nl -+ n2, etc.), and 

Q(1) = - ~-  [ r-~ (rt x a~)32 -Pa) ~g3 (rl x ~,) 

} + ~ ri--5 (rl x e l )a (e l .  Pl) 

Q(2) = Q(1)(rl -~ r2, el -+ e2, etc.). 
It is observed that the perturbation operator Q diverges at the origin as r -4. 

Therefore, in order to ensure that the wave function shall have proper behavior 
at the origin that would lead to a convergent matrix element for the perturba- 
tion operators that depend on r -n (n >t 2), let us redefine the unperturbed and 
the perturbing Hamiltonian by adding and substracting the term f(rl ,  r2) such 
that 

1 [  Of J2 Of/2 ] (4.4) 

~(~,,~2):~ - ;~ - 4 l 

where J/"' - $01. 
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With this choice off(r1, r2) we get the new unperturbed wave function 

where 

with 

~o satifies HRO Co = -- E Ro CO 
• . t t t 

~ satlfies H k o  ~ o = - E R o  ~ o 

HRO = HRO + f(?'l, r2) 

and the new perturbation operator Q' = Q - f ( r  1, r2). 
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Here, 

' ('o) s = ~ - ~  [ e (1 )~ (2 )  - ~(2)~(1)1 ,  ~ = , ~ = 

, , [,<-' I ' + ' 
Q2=Std2°  o~ [ r l  3 ( r lXel)3 j  cOS Q2(2) 

, 1 o C ;  1 0 ~ ;  
= - 2 / < ~  o ~ - -  - 2 K ~ ;  

Oq~ I ?'2 30q~ 2 

Q, = StCo [ r '  3 (r, x =,),j  ~ ~)~)S + Q;(2) 

= Q ;  

(4.1.1b) 

(4.1.1c) 

4.1. Ground State (11S)-Parahelium 
We can evaluate the matrix elements in Q' by using the 6-parameter 

Hylleraas variational wave function (Hylleraas, 1929) 

~o = e-(A/Z)s(1 + C1 u + C2t 2 + C3s + C4s 2 + Cs b/2) (Unnormalized) 

where s = F 1 -k F2, t = F 1 - - / ' 2 ,  u = ?'12, 

C1 = 0.353808, C2 = 0.128521, C 3 = -0-100828 

C4 = 0.033124, Cs = -0.031799 

and A = 3.64. 
The various terms in the matrix element of Q' can be written out explicitly 

as follows (in atomic units): 

Qi = - S ? C ;  u2K-----~2 'rK~l ~ rl 6 (rl x el)3Z~;S+S,+C; tp;S+Q'I(2 ) 

K 2 ~  2 Kze~ 2 
_ cos20, .~;2 + 2'r-----~-- c°s202 "~;2 (4.1.1a) 

?'14 
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From symmetry, it is seen that the Q~ and Q~ terms vanish when integrating 
over the azimuthal angles ¢2 and ¢2. 

We thus arrived at the energy shift (AE2z)p s as follows: 

f K2a2N2 f c°s202 K2oz2N2 cosZ01 C~12 d'r + - -  - -  C~ 2 d~- 
(~E22) 1Is ~--" T ~'1 ~ 2 r2 4 

where N 2 is the normalization constant 

N 2 ( < ,  , -I 
= Col Co>) 

dr = d3rl .d3r2 

By carrying out the integration (Yu, 1974), we obtain (AE22)1~ s ~ 4-8 cm -1. 

4.2. The Excited State (23S)-Orthohelium 

In the triplet S state of lowest energy for orthohelium, the terms, 

and Ka(r i X evi) 3 
(ei Pi), i = 1,2 

?,i 3 

give vanishing matrix elements, independent of the spin states of the electrons, 
therefore the only non-vanishing matrix element is still 

cos 201 cos 202 4 
r l  4 /'2 4 

Because of the larger separation of the electrons from the nucleus, the 
energy shift of  this state should be smaller than that of 11S state. The simple 
wave function, the antisymmetrized product of two hydrogen-like wave 
function with nuclear charge Zi and Za for the inner and outer electron, will 
be sufficient for calculating the matrix element. The wave function is 
(Bethe & Salpeter, 1957), 

C;  = [exp ( - z i r2  - ½z~rl)(½zarl - 1) - exp (-Zar2 - ½zi. P1) 

K' K' ) 
x (½zar 2 -- 1)] exp -- (4.2.1) 

r 1 r2  

where z i ~ 2-01, Za -~ 1"53. 
With this wave function we find (Yu, 1974) the energy shift from the term 

cos 20j cos z02 - - +  
£ 14 £2 4 

to be (zXE22)23s ~ 3-5 cm -t.  
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5. The Lamb Shift of  Helium 

What we will compare from theory, with the experimental results, is what 
is usually referred to as the Lamb shift in the ionization energy of He. That is 
the difference of energy shift with the corresponding energy levels of He + and 
He atom. Because, previously, we assumed that those extra terms are the 
replacements of the usual quantum electrodynamics contributions, the energy 
shift to the ionization energy due to those extra terms will be associated with 
Lamb shift of Helium. Therefore we first have to calculate the energy shift 
due to this kind of extra term for He + , which is (Sachs, 1972) 

where 

with 

( 2 . )  2 .[,+.,] 
AECHe +) = ~-~rr [(S +N) + (2c021~ X+] mc2" I 

(2K,+ 
+I=(r/zaO-' 7 exp - T )  p 

0 

e~ 

0 

K =  

p =f/r 

167r (gm)  (2c02 
[(S +N) + (2,~)211/z ~c  

¢o 

F =e -p ~ pS+Uau 
U = 0  

(5.1) 

G=e -0 ~ pS+Ubu 
U = 0  

S --- x/[k 2 - (2o021, k = -+ (] + ½) 

The principal quantum number n = N + k, N = u. For the 1S state of He + we 
have F~aope  -°, G ~  aooaW. Thus we obtain the result: AE(He +) ~ 3-4 cm -1+ 

Next, we shall investigate the contribution of the operator H 21 to the 
energy shift. H21 is proportional to 1/r]2 and H22 is proportional to 1/rl 2 and 
1/r22, The interaction strength in H 21 is one-half of that in H22. For the 11S 
state, from Pekeris' results (Pekeris, 1959), 

1 1 1 1 1 



86 H U N G  Y U  A N D  M. S A C H S  

Hence the energy shift due to H2 t, (AE)21, is approximately one-tenth of 
(AE)22. That is, (AE)21 is roughly -0 .5  cm -1. For the 23S state, 

Hence the energy shift due to H21 for this state can be neglected. 
Finally, the energy" shift associated with the Lamb shift is 

a [ :  j = a e ( H e * )  - ( a e ) 2 2  - ( a e ) 2 1  (5.2)  

For the 11S state: AEj =3-4 cm -1 - 4-8 cm -1 - ( -0 .5 )  cm -1 = - 0 . 9  cm -1. 
For the 23S state: AEj  = 3 4  cm -1 - 3-5 cm -1 = -0 -1  cm -1. 

6. Comparison and Discussion 

The aim of this analysis has been to determine whether or not the generalized 
theory of electrodynamics which is incorporated in Sachs' self-consistent field 
theory might lead to a prediction in the fine structure of Helium that could be 
comparable with the contribution that is conventionally attributed to radiative 
corrections, according to quantum etectrodynamics. This is the very small 
correction in the conventional theory of the Helium atom, leading to energy 
level shifts in the low-lying states of the order of 1 cm -1, that are necessary 
to obtain agreement between theory and experiment. 

To compare the theoretical predictions according to the results in the 
preceding chapter with experiment, reference may be made to Herzberg's 
(1958) observations of the ionization potential of Helium. He compared his 
results with the theoretical values obtained from relativistic wave mechanics 
for the two-electron a tom- the  Breit Hamittonian, also including mass-polariza- 
tion correction. He then attributed the difference between these theoretical 
predictions and his observations to radiative effects. The calculations of these 
radiative effects according to quantum electrodynamics agreed with Herzberg's 
results for this difference. 

However, the present theory also predicts the Helium spectrum from the 
Dirac formalism for the two-electron atom, including the Breit terms, as well 
as extra (generalized) electromagnetic terms, but without the radiative terms 
present. It is then the aim in this investigation to see if the theory proposed 
might also feasibly account for this required correction in the spectrum of 
Helium, instead of evoking the radiative effects. If  so, then the general form 
of this theory would have to be tested against quantum electrodynamics in 
further applications. 

Herzberg's ionization potentials were to have the following values: 

Jexp(He 4) = 198310.82 -+ 0.15 cm -1 

Jexp(He 3) = 198300-32 -+ 0-15 cm -1 

~['aking into account the isotope shift of 10.50 -2-- 0.05 cm -1 and using 
Perkeris' theoretical value, from his variation calculation with 203 parameters, 
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Jth(He 4) = 198312-01 cm-1, Jth(He 3) = 198301-54 cm -1, Herzberg obtained 
the following 'experimental' values of the Lamb shift for the ground state, 

AEi(He 4) = --1.19 +- 0.15 cm -1 

AE/(He 3) = -- 1.23 + 0.15 cm -I 

If we take the ionization potential of Helium from Pekeris (1962) theoretical 
value from solving a determinant of order t 078, 

Jth(He 4) = 198312.026 cm -1 

then, comparing with Herzberg's ionization potential, we obtain the corre- 
sponding 'experimental' values for the ground state 

AEj(He 4) = -- 1.21 -+ 0.15 cm -t  

AEj(He 3) = -- 1.25 +- 0.15 cm -1 

The present calculation from this theory gives 

AEj(I IS) _~ -0-9(5)  c m - '  

For the 235 , state of Helium, Herzberg's experimental ionization potential 
is 38454.73 + 0-05 cm -I. The corresponding Perkeris (1962) theoretical value 
is 38454.8274 cm -1. Thus the 'experimental' Lamb shift for this state is 
- 0 -10  -+ 0-05 cm-t .  This present calculation gives 

AEj(23S) = -0 -10  cm -1 

For the 21S state of Helium, Herzberg's experimental value is 32033.26 -+ 
0-03 cm-1. The corresponding result of Pekeris (1962) is 32033-318 cm-1. 
Thus the 'experimental' Lamb shift is --0-06 -+ 0-03 cm-1. The present 
calculation gives 

Ej(21S) = -0"10 cm -1 

We can see that, to the accuracy used here, the results of present calcula- 
tions are the same order of magnitude as the experimental values for the 
required shifts. However, there is some discrepancy. Part of this discrepancy 
probably comes from the assumption of a stationary point charge nucleus, 
without taking account of the charge distribution of Helium nucleus. A better 
approximation to the solution of more coupled field equations that describe 
the system may inprove the results and would contribute to the difference in 
the Lamb shifts in He 4 and He 3. 

Other sources of error are: the approximations used when evaluating the 
intergrats 11 I, I12,/21,/22 (Yu, 1974), the cut-off for the reduced Hamittonian 
to the order of c~ 2, the approximation used for the wave function in the 
calculations of the matrix elements required in this study. It may be pointed 
out, however, that a wave function using many more terms in its perturbation 
expansion would not improve the results of the present paper very much. A 
more accurate calculation, taking these possible errors into account, would 
be needed to make comparison with the experimental result in the second 
decimal place-which is the accuracy of the experimental values. Thus, the 
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present approximate agreement suggests that  the Sachs formulation is indeed 
correct.  

According to quantum electrodynamics,  the totaI radiative correction (the 
Lamb shift) to the ionization potential  energy of  Helium for the ground state 
is - 1 - 3 4 1  -+ 0-05 cm -1 (Kabir  & Salpeter, 1957). The radiative shifts for the 
21S and 23S states, according Suh and Zaidi, as quoted in Pekeris ( I962) ,  are 
- 0 . 1 0 4  -+ 0-014 cm - I  and - 0 - 1 0 9  +-- 0-009 cm - l ,  respectively. 

We see that  our results are also close to theirs. However, the results of  this 
paper come from a theory that is fundamentally different from quantum 
electrodyanmics both  in concepts and formalism. From this theory,  the 
dynamical  and electromagnetic coupling of  the electron-nucleus system alone 
leads to correct predictions of  the Lamb shift. Thus the theoretical inter- 
pretat ion of  the Lamb shift is not necessarily a consequence of  the assumptions 
of  quantum electrodynamics.  The implication then follows that  the self- 
consistent field theory should be compared with quantum etectrodynamics 
in still further applications. 
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